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Abstract:

Fingerprint classification becomes central to biometrics authentication and forensic identification. Since poor-quality
images, imbalanced classes, and complicated ridge patterns plague conventional classification methods, the conventional
classification models' accuracy is affected. To overcome this, a hybrid deep learning framework is proposed, combining
CNNs with Vision Transformers and an integrated attention mechanism to improve the fingerprint image classification
performance. For local spatial feature extraction, CNNs are used, and for capturing long-range global dependencies that
exist within fingerprint patterns, ViTs are used. Finally, embedding the attention module helps the model to concentrate
on highly discriminative features that increase model interpretability and reduce misclassification. Data augmentation
considered rotation, scaling, and shifting to instill insensitivity and diversity into the data, thus instilling robustness and
broader generalities in the model. The hybrid architecture benefits from the complementary advantages of CNNs and ViTs
and at the same time promotes computational efficiency. The evaluation of the proposed model using comprehensive
performance measures such as accuracy, precision, recall, and ROC-AUC assures applicability in real-time biometric
systems. Experimental evidence confirms that such an integrated method greatly surpasses conventional CNN-only as well
as pure ViT classifiers, especially with complex, noisy fingerprint datasets. The incorporation of data augmentation
techniques, including rotation, scaling, and shifting, addresses challenges such as class imbalance and data variability.
With an accuracy of up to 91.15% after 30 epochs, the model proves effective across various fingerprint datasets (DB1,
DB2, DB3, DB4), showing its potential for real-time biometric identification and security applications. The performance
metrics, such as precision, recall, F1-score, and ROC-AUC, confirm that the model offers a reliable solution for high-
accuracy classification tasks.

Keywords: Latent Fingerprint, Minutiae Detection, Deep Learning, CNN-ViT Hybrid, Attention Mechanism, Biometric
Recognition

1. INTRODUCTION

Fingerprint recognition remains a vital authentication method with biometric application since the principle of uniqueness
offers permanence applicable in many areas such as law enforcement, border security, or mobile device access. If we
consider biological traits, fingerprints are highly regarded because their fine-grained features, including ridges,
bifurcations, and minutiae, bear tremendous discriminatory capabilities [1]. However, intra-class variations, noisy
acquisitions, partial prints, and less than clear impressions continue to be disadvantages for traditional fingerprint
classification systems, particularly when latent or distorted samples are involved. Standard approaches mostly based on
extracting handcrafted features and rule-based classifiers are neither adapting nor robust enough to cope with such
complicated variations presented in fingerprint data [2].

Such limitations are therefore addressed with the deep learning approach and hence have been widely studied in recent
years. Convolutional neural networks in particular efficiently learn localization operators, spatial hierarchies, or scale from
fingerprint images. CNN architectures are capable of extracting strong features, e.g., ridge flows and minutiae points. They
are, however [3], limited in extracting long-range dependency and global relationship-the very features required-to help
with the holistic understanding of a complicated fingerprint class.

ViTs have been developed as powerful alternatives to bridge this chasm. Originally meant for natural image classifications,
ViTs better model the global attention and spatial dependencies through self-attention mechanisms. This is a huge
advantage while handling non-local context, which complements the local feature extraction operation of CNNs [4].
However, ViTs alone might still not do very well on smaller datasets or in cases where fine-grained local information is
important, such as fingerprint classification.The research works on a hybrid deep learning model that combines CNN, ViT,
and an attention mechanism into a single framework. The CNN component is set to generate fine-level spatial features
while the VIiT component is responsible for global representation. An attention module is also added to make the
identification of informative regions present in the fingerprint image more dynamic, such as ridge patterns or clusters of
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minutiae [5]. This hybrid setting ensures that both local details and global contexts are learned and applied for classification
tasks.

In addition, it applies data augmentation techniques such as image rotation, translation, and scaling to address class
imbalance and limited training sets. These methods ensure that the model improves its generalization and robustness across
varying fingerprint classes and acquisition conditions [6]. Training and evaluation happened on various publicly available
fingerprint datasets (DB1, DB2, DB3, and DB4), each corresponding to differentiated fingerprint classes and complexities.
The proposed hybrid model shows much improved accuracy in classification, by up to 91.15%, measured after 30 epochs
of training. Other metrics such as precision, recall, F1-Score, and ROC-AUC established that it performs more reliably
with consistent classification.

The present study underscores the feasibility of fusing CNNs and ViTs for fingerprint classification and indicates that the
proposed hybrid architecture can be utilized in real-world biometric systems. Having the ability to generalize over multiple
types of fingerprints, the model can also be employed in forensic identification and mobile authentication scenarios [7].
Furthermore, this paves the way for the fruitful investigation into multi-modal biometric systems, where fingerprint data
could be paired with those of other biometric traits such as iris or face, toward a higher level of security and identification
precision [8]. Fig. 1 describes enhancing fingerprint matching with deep learning.
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Fig. 1: Enhancing Fingerprint Matching with Deep Learning

A. Deep Learning in Fingerprint Recognition

Deep learning has revolutionized fingerprint recognition by providing powerful methods for modelling intricate fingerprint
patterns and structures. Contrary to traditional algorithms wherein features are handcrafted, features here are
discriminatively learned by deep neural networks from the raw input data [9]. CNNs are good at capturing local spatial
information, such as ridge structures and minutiae, useful in high-resolution fingerprint classification. CNNs, however,
may have limitation in grasping long-range dependencies and global contexts, especially for partial or latent prints. ViTs,
conversely, build global relations using self-attention mechanisms, allowing for comprehension of the fingerprint topology
in a more holistic manner. Coupled with attention modules, these models learn to weigh relevant regions dynamically, thus
improving classification performance [10]. Fig .2 describes deep learning in fingerprint recognition.
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Fig .2: Deep Learning in Fingerprint Recognition
Il. LITERATURE REVIEW

Abdul Wahab et al. [1] (2024) uses a GAN-based enhancement technique that integrates information about minutiae
location and orientation fields to best enhance latent fingerprint clarity and ridge preservation. It is computationally
expensive and very hard to balance the realism of the fingerprint with accurate feature preservation.

Temirlan Meiramkhanov et al. [2] (2024) Combined CNNs with Gabor filter enhancement techniques to improve
recognition accuracy on manipulated fingerprint impressions to 94% with the Sokoto Coventry dataset. Low generalization
capacity across different fingerprint kinds; heavy reliance on dataset-specific tuning.

Milind B. Bhilavade et al. [3] (2024) Compared matching scores for relatively poor fingerprint images reconstructed by
conventional minutiae-based methods and deep learning, varying between 23-94% (DL) and 82-99.99% (minutiae-based).
Deep learning methods performed inconsistently with different types of damage and considering the image quality.

Hongtian Zhao et al. [4] (2024) ResNet with Generalized loU-based NMS for outlier-resistant minutiae extraction,
outperforming state-of-the-art methods over the NIST SD4 and FVC2004 datasets. The performance depends on inference
accuracy, with very large annotated datasets.

Sahar A. EI_Rahman et al. [5] (2024) Presented CNN-based fingerprint unimodal and ECG-fingerprint multimodal
systems, the sequential fusion ones yielding the highest AUC (0.99). High complexity in managing multimodal data and
training large-scale fusion models.

A. A. Mulay et al. [6] (2024) Used ensemble of minutiae configurations with U-Net and ViT, gaining around 1.7% higher
accuracy on challenging datasets such as NIST SD302. Slight performance gains with increased model complexity via
ensemble strategies.

T. Kavitha et al. [7] (2024) Comprises an automated fingerprint recognition system for forensic crime detection with CNNs,
having an accuracy exceeding 81%.Limited performance due to small data size and availability of better preprocessing
techniques for noisy inputs.

P. Khare et al. [9] (2024) Introduced YOLO-based fingerprint recognition models trained on 4,000 annotated images, which
raised mMAP@0.5 from 93% to 97.4%. Accuracy depends heavily on annotated data quality; due to small datasets, it is
difficult to generalize well.

Zexi Jia et al. [9] (2024) Finger Recovery Transformer (FingerRT) is designed to restore degraded or partial prints by

harnessing the powers of Vision Transformers and enhancement networks. More computationally expensive and sensitive
to segmentation errors during preprocessing.
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S. Kriangkhajorn et al. [10] (2024) A frequency-domain latent print restoration framework using deep learning filter
predictors was proposed to increase rank-1 identification accuracy. Complicated block partition; performance degrades
strongly with the initial filter quality and level of degradation.

Z. Pan et al. [11] (2024) Dense Minutia Descriptor was developed by using deep learning concepts to encode 3D minutiae
patches for precise latent matching. One limitation involved being exhaustive and computationally expensive during
matching, while also having difficulties with overlapping and noisy backgrounds.

N. Bhargava et al. [12] (2024) Employed image processing followed by skeletonization in order to form bit-string-encoded
fingers for easy storage and matching It is not robust to heavy noise and may discriminate against partial and distorted
inputs.

R. Bano et al. [13] (2024) Approach to AFIS classification proposed by deep learning using features such as hand
orientation and sweat pore patterns. The approach is far too dependent on publicly available datasets, which might not be
diverse enough or representative of the true forensic variance.

Yusuf Artan et al. [14] (2024) Developed a fusion-based local matching technique that integrates handcrafted features
with deep embeddings for latent print recognition. Increased complexity is brought about by the fusion process,
contributing to more dependency on various stages of accurate feature extractions and, thus, more overhead for the system.

The study presented by Saket Pateriya et al. [15] (2024) propose the use of the scattering transform with the Shearlet
Network (SSNet) to extract the fingerprint features with maximum robustness, and then a score-level fusion scheme is used
for higher authentication accuracy. May face difficulty adapting to highly distorted or occluded fingerprints in real-time
environments.

Yuhang Qiu et al. [16] (2024) proposes IFVIT, a two-stage framework for accurate and interpretable fingerprint matching.
It performs dense fingerprint alignment using a Siamese ViT and then extracts fixed-length, interpretable representations
via retrained ViTs with a fully connected layer. Experiments on public datasets demonstrate improved matching
performance and interpretability. Depends on large training data and may involve heavy computational resources during
deployment.

The general analysis of fingerprint verification and forgery detection with deep learning and machine learning techniques,
by M. Genel, et al. [17] (2024), is facing new security threats such as fake fingerprint attacks. Given the SOCOfing dataset,
models were implemented under various configurations and hyperparameter settings for performance evaluation.
Comparative results, showing the pros and cons of each method, enabled the selection of the best-performing models.
Limited scope in real-time applications and relies on dataset-specific spoofing patterns.

For detecting spoofs in contactless fingerprint systems, which are increasingly being developed because of their convenient
and hygienic benefits, Kanchana Rajaram et al. [18] (2024) propose CLNet, a deep learning approach. Existing methods
for spoof detection often work with a limited set of features, resulting in low accuracy. Trained on the newly created S-
CLAF dataset, CLNet achieved accuracy on the order of 99.07%, and it also provided high results on generalization:
98.32% on LivDet 2015 and 99.38% on the IIT Bombay dataset, bettering the results of the current state-of-the-art
approaches. Performance may degrade when exposed to unseen spoofing techniques or poor lighting conditions.

H. M. Mishra and fellow analysts in 2024 [19] worked in Minutia-based mapping and Convolutional Neural Networks
(CNNSs), whereby deep learning means go into fingerprint matching to further its accuracy and speed. The unigueness and
permanence of fingerprints give these methods a great deal toward being implicated in modern biometric authentication
and forensic investigations. Some conventional enhancement techniques may be ineffective on extremely noisy or partial
prints.

A. Nobrega et al. [20] (2024) provides an interesting possibility to produce more efficient minutiae descriptors for latent
fingerprint identification, without needing private datasets. Experiments on NIST SD27 confirm an increase in hit rate of
6.59% over commercial tools, thus validating the strength of self-supervision and data augmentation methods for latent
fingerprint recognition.Synthetic data may not fully capture real-world latent fingerprint distortions.

Abdulrasool Jadaan Abed —et al. [21] (2024) proposed a fingerprint identification approach using deep learning specifically
geared toward low-quality fingerprint images. Experimental results demonstrate that this approach is more accurate and
more robust under adverse conditions than conventional local minutia methods. This work stresses that there remains a
need to innovate in biometric systems and suggests that fusion of multimodal biometrics may improve the performance
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further when coming to real applications. Performance may drop without pre-enhancement or on highly distorted
fingerprints.

In 2024, X. Guan et al. [22] proposed the PDRNet (Phase-aggregated Dual-branch Registration Network) to allow for
enhanced dense registration of fingerprints by aligning pairs down to the pixel level. Extensive experiments across different
datasets show that PDRNet truly meets the state-of-the-art accuracy and robustness paradigm, while still maintaining
competitive efficiency in fingerprint registration. Complex architecture may hinder real-time deployment or mobile
implementation.

The list of applications discussed by A. Juneja, et al. [23] (2024) is ever-changing. Recent developments in fingerprint
recognition reviewed include contactless identification using CNNs. Identification may also follow a hygienic minutiae-
based process. Indoor positioning systems rank individuals against radio signals using ML models: k-NN and SVM series.
Browser fingerprinting passively recognizes users by identifying unique browser configurations.

D. Mari et al. [24] (2024) carry out the first deeper investigation into the suitability of learning-based image codecs such
as JPEG-AI for storing fingerprint images, where compression artifacts might affect the extraction of biometric features.
They do provide a 47.8% BD rate reduction and a +3.97 dB PSNR gain without forfeiting automatic identification accuracy
and human readability. May still need optimization for edge devices with limited decoding capacity.

111. RESEARCH OBJECTIVES

¢ Develop a robust image classification system using a hybrid deep learning model combining CNN (Convolutional
Neural Network) and ViT (Vision Transformer) with an Attention mechanism. The goal is to enhance
classification accuracy by efficiently capturing both local and global features from fingerprint images.

e Address challenges such as class imbalance by applying data augmentation techniques like rotation, scaling, and
shifting, which enrich the training dataset. This improves the model’s ability to generalize across various image
scenarios, thereby reducing misclassifications.

e Implement an integrated approach that uses CNN for spatial feature extraction, ViT for capturing long-range
dependencies, and an Attention mechanism to refine focus on significant regions of the image, resulting in a more
accurate and adaptive classification system.

e Evaluate the proposed model using multiple performance metrics, including accuracy, precision, recall, and ROC-
AUC. These evaluations help assess the model’s effectiveness in classifying fingerprint data and ensure reliable

real-time decision-making support.

IV. PROPOSED METHODOLOGY
A. Dataset Description and System Configuration

Fingerprint images from public biometric databases, namely DB1, DB2, DB3, and DB4, have been used for the study.
Each of these benchmark datasets is fairly popular among biometric researchers in evaluating fingerprint recognition and
classification algorithms. These datasets provide a variety of fingerprint patterns, differing in image quality and acquisition
conditions, so that the image classification model proposed can be trained under one condition, validated in another, and
finally tested for performance under yet a third condition. The use of multiple datasets exemplifies the generalizability of
the method and moves towards a more holistic evaluation against very diverse biometric conditions.

Cloud-Based Execution Environment: Google Colab

The project was implemented and executed on Google Colab, which functions as a cloud-hosted Jupyter notebook; it may
be considered as a robust and scaled platform for deep learning research. Using Colab's GPU-accelerated infrastructure,
the hybrid CNN + ViT could be efficiently trained and evaluated without the necessity of local computational resources.

e Seamless Library and Dataset Integration:

Colab supports all major deep learning and data science libraries such as TensorFlow, Keras, Scikit-learn, NumPy,
OpenCV, and Matplotlib, therefore simplifying model development. Dataset access was integrated through the mounting
of Google Drive, with which fingerprint image datasets can be loaded, pre-processed, and augmented rapidly; thereby
implying that high-throughput experimentation was carried out entirely within the notebook.

e Interactive Debugging and Real-Time Monitoring:
The interface supported code execution on a step-by-step basis, an integral part of iterative debugging, hyperparameter
adjustments, and pipeline refinement. In-line visualizations supported the real-time tracking of training metrics such as loss
convergence and classification accuracy. Evaluation plots such as confusion matrices, ROC-AUC, and precision-recall
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curves were also dynamically created, giving insightful information on the model behavior to help in decision-making
through optimization during the entire development lifecycle.

B. Proposed Model

A hybrid deep learning architecture comprising Convolutional Neural Networks, Vision Transformers, and Self-Attention
is thus proposed to improve the classification of fingerprints by modeling local texture features as well as global
dependencies. These multi-branch setups improve the accrual of accuracy and can be scaled to fit more complex
environments, making them highly capable of solving large-scale biometric problems.

The design implemented passes through a three-stage pipeline: data pre-processing, feature selection and optimization, and
model training and hybridization. At first, Min-Max scaling is employed to normalize fingerprint images, and they are then
resized to 80x80 to maintain consistency across the dataset. To augment data in the context of diversity generation and
countering overfitting, augmentations such as rotations, flips, and affine transformations are applied. In the meanwhile,
spatial filters, including Gaussian and median, are used to accentuate ridge-valley structures. With respect to the dataset, it
is stratified into training, validation, and testing populations. During the feature selection phase, CNN layers extract
hierarchical spatial features ranging from ridge flow to minutiae, and SMOTE handles class imbalance within fingerprint
datasets (DB1-DB4) by producing synthetic samples. Next, the hybrid architecture combines the local feature extraction
of CNN with ViT to capture global dependencies via Multi-Head Self-Attention on tokenized image patches. A channel-
wise attention mechanism is then incorporated to refocus the attention onto the significant regions, such as cores and
minutiae clusters. The Adam optimizer with adaptive learning rate serves to train the system, whereas a tailored categorical
cross-entropy loss penalizes errors in classifying minority classes. Early stopping and model checkpointing are applied to
encourage generalization and alleviate overfitting, thus forming a robust system for fingerprint classification.

Now, the three-stage pipeline consisting of data preprocessing, feature selection and optimization, and model training and
hybridization is implemented to build the system. Fingerprint images are first normalized using Min-Max scaling and
resized to 80x80 pixels for dataset consistency. Data augmentation methods, including rotations, flips, and affine
transformations, are applied to improve diversity and reduce overfitting, while ridge-valley structures are enhanced with
spatial filters such as Gaussian and median filters. The dataset is further stratified into three subsets: training, validation,
and testing. During the feature selection phase, layers of CNN extract hierarchical spatial features ranging from ridge flow
to minutiae, while SMOTE deals with class imbalances in fingerprint datasets (DB1-DB4) by generating synthetic samples.
The hybrid approach, then, combines CNN-based local feature extraction with ViT for capturing global dependencies via
Multi-Head Self-Attention on tokenized patches of image. Using channel-wise attention mechanisms, the focus is refined
onto the important regions, such as cores and minutiae clusters. Through the Adam optimizer with an adaptive learning
rate, the model is trained, and the loss function is a bespoke categorical cross-entropy penalizing mistakes in classifying
minority classes. Early stopping with model check pointing ensures generalization while preventing overfitting, realizing
a strong fingerprint classification system.Fig.3 shows flowchart of proposed methodology.
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C. Hybrid Model

e CNN for Feature Extraction in Fingerprint Classification:

In the first step of the proposed approach, CNNSs act as the major classes for local feature extraction from the raw fingerprint
images. CNNs are well-tightened bestowed to work on gridlike data such as images, and having spatial hierarchies and
local dependencies are significant. Fingerprint patterns are inherently structured, comprising ridge endings, bifurcations,
cores, and deltas, which must be accurately captured to differentiate among fingerprint classes (e.g., DB1-DB4).

At shallow layers, CNNs describe low-level features such as edges and gradients (e.g., Prewitt or Sobel-like filters), while
deeper layers extract high-level semantic patterns such as ridge flow directions, ridge frequency, and minutiae
constellations. These spatial features serve as a generous contrast to noise, illumination, and slight distortions, thus enabling
high distinctiveness and robustness.

Also, to further improve fingerprint representation, convolution padding is used to maintain spatial resolution while dropout
regularization prevents overfitting, especially with class-imbalance or limited-sample-diversity datasets.

This process of encoding hierarchical features serves as the foundational input for the ensuing Vision Transformer (ViT)
and Attention modules with which global context modeling is performed. Extracted CNN feature maps are treated as spatial
descriptors loaded with rich information on localized morphological characteristics of each fingerprint class. These
descriptors serve to, on the one hand, speed up convergence in the transformer module and, on the other hand, guarantee
that the hybrid model is able to take advantage both local and global fingerprint information.

e ViT (Vision Transformer) for Global Feature Learning in Fingerprint Classification:

Following early-stage localized feature extraction via CNN, intermediate spatial representations are fed into a ViT module
to model global contextual dependencies present in the fingerprint images. In contrast with CNNs, which normally act over
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local receptive fields within some window size, ViTs have a capacity to gather long-range interactions between image
regions, thus being ideal for understanding global structure and holistic fingerprint patterning.

Provided the CNN feature maps, the ViT first splits them into a sequence of fixed-size image patches such as 16 x 16
(16x16 pixels), which are flattened and then linearly projected into a latent embedding space. Each of these patch
embeddings is subsequently added to positional encodings to maintain spatial order, compensating for the absence of some
inductive biases (locality, translation invariance) that are natively present within a CNN.

e Hybrid Model: Merging CNN + ViT with Attention Mechanism for Fingerprint Classification:

In the final stage, the proposed architecture performs feature fusion by combining the outputs of the CNN (which captures
fine details of spatial hierarchies) and the Vision Transformer (ViT) (which encodes global contextual dependencies). The
composite representation psi_g ¢ is refined by considering channel-spatial Attention, which emphasizes the most
discriminative regions and feature channels of the fingerprint image.

The CNN provides low-level features such as ridge orientations, minutiae points, and texture gradients, whereas ViT
models spatial interrelationships between these features across image planes. The Attention module is key to contextually
selecting features, providing adaptive weighting along spatial and channel dimensions by judging the importance of each
activation map with respect to the classification goal.

This focusing ability emphasizes discriminating features such as ridge terminations, bifurcations, and rare structural
features distinguishing one fingerprint class from another. The combined form of CNN-ViT—Attention pipeline is the key
to building powerful representations that draw from both local details and global coherence.

The final fused feature vector is passed through a sequence of fully connected (dense) layers, culminating in a softmax
output layer, which assigns the input to one of the predefined fingerprint classes (say: DB1, DB2, DB3, DB4). A custom
loss function would be used-if needed-to relinquish an emphasis on an imbalanced nature of classes, such as weighted
categorical cross-entropy or focal loss.

D. Evaluation Metrics

Accuracy
" True positive + True Negetive )
ccuracy =
y TotalNumber of Instance
Precision
o T iti
Precision = ,rfw Ed — )
. True Positive+False Positives
Recall (Sensitivity)
Recall = Tr:ue Positives : (3)
True Positives+False Negatives
F1-Score
Precision xRecall
F1 _ SCOTC - 2 X recision XReca (4)

- . Precision+Recall
Confusion Matrix

The confusion matrix provides detailed information on the classification accuracy by displaying true and false predictions
for each fingerprint class (DB1 through DB4), thus revealing class-wise performances. It allows for the detection of
misclassification trends, empowering us to improve the model in specific areas so as to increase security and accuracy in
fingerprint verification.

ROC-AUC (Receiver Operating Characteristic - Area under Curve)

ROC Curve, each fingerprint class (DB1-DB4) maintains a diagonal line determined by mixing true positives with false
positives for all thresholds. The higher the area under the curve, the better the discrimination power the classifier has;
hence, the threshold can be selected on the basis of practical feasibility in the case of scenarios such as early alarms or
missed detections.

V. RESULTS and DISCUSSION

An in-depth evaluation of the hybrid deep learning framework for fingerprint classification, identification, and verification
involves CNNs employed for spatial feature extraction where local features such as ridges and bifurcations are captured,
whereas ViT models are used for global context awareness through self-attention mechanisms across image patches. This
canon of integration improves the classification and verification performances and is validated through taxing performance
metrics like Accuracy, Precision, Recall, F1-Score, Confusion Matrix, and ROC-AUC to corroborate its discriminating
ability on fingerprint samples from various datasets.
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Fig. 4: LoG - ROC Curve

The model could benefit from further tuning in order to optimize its performance on the more challenging classes.The LoG
ROC Curve in Fig. 4 shows an AUC of 0.91, which is indicative of good performance but not quite perfect. Given the stiff
rise, the curve suggests that this model faces few challenges in distinguishing the different classes but should still ameliorate

in reducing the false positives.
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Fig. 5: LoG - Multiclass Precision-Recall Curve
The results show that while the model is great in identifying some classes, some classes, especially Class 4, may need
either more data or better extraction techniques. The LoG Multiclass Precision-Recall Curve in Fig. 5 gives a comparative
performance of the model for the different classes. Class 3 had a very high AUC of 0.99, meaning that the model is highly
capable to discriminate when it comes to precision-recall trade-off. Class 4, on the other hand, received a poor AUC of
0.58, which means that the model really does not excel in dealing with this particular class. Classes 1 and 2 performed
fairly well with AUCs of 0.96 and 0.72, respectively.

LoG - Box Plot of Loss and Accuracy
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Fig. 6: LoG - Box Plot of Loss and Accuracy
A LoG Box Plot of Loss and Accuracy, as seen in Fig. 6, shows training accuracy to be slightly higher than the validation
accuracy; both accuracies, however, show very little variability. And in Loss, the validation loss is still quite high as
compared to the training loss. Therefore, these factors, with the rather-high validation loss and quite-good training
accuracy, sometimes indicate overfitting in a model trained on training data. Additional regularization can be achieved
with dropout and by providing more training data for better generalization, especially on the validation set.
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Test Accuracy (LoG, 10 epochs)

The model's accuracy could likely be enhanced by tuning hyperparameters, increasing training epochs, or improving the
feature extraction process. Additionally, more advanced techniques such as data augmentation, regularization, or using a
deeper architecture could further improve the model’s generalization ability on the test set.Hyperparameter tuning, using
more training epochs, and improving the extraction of features could have been options to enhance the accuracy of the
model. Advanced techniques such as augmentation, regularization, or maybe a deeper architecture could offer

improvements to the model's ability to generalize to the test set. The Test Accuracy was 73.70% for the LoG model after
10 epochs.
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Fig. 7: Prewitt - Confusion Matrix for 30 Epochs
The Prewitt Confusion Matrix for 30 Epochs in Fig. 7 shows improved performance compared to previous epochs. The
model performed well on DB1 and DB3, with 192 and 182 correct predictions, respectively. However, misclassifications
remain on DB2 and DB4, with DB2 showing 38 misclassified instances and DB4 showing 109 misclassified instances.
While the accuracy for most classes has improved, there are still some challenges, particularly with DB4, which could
benefit from more data or further model refinement.
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Fig. 8: Prewitt - ROC Curve
The curve shows a sharp rise in the TPR along a low FPR, showing the ability of the model to identify the classes correctly.
While the AUC is high, some fine-tuning may upgrade performance, mainly to distinguish among more difficult
classes.The Prewitt ROC Curve of Fig. 8 shows an AUC of 0.96, which means that the model has performed fabulously in
discriminating between classes.

Prewitt - Multiclass Precision-Recall Curve
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Fig. 9: Prewitt - Multiclass Precision-Recall Curve
The results show that the performance of the model differs from class to class-stellar for Class 1 and requiring optimization
for Class 4. The Prewitt Multiclass Precision-Recall Curve in Fig.9 shows how the model performs for the different classes.
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The AUC was perfect, at 1, for Class 1, 0.85, 0.98, and 0.79 for Classes 2, 3, and 4, respectively. While Class 1 has near-
perfect precision, Class 4 continues to struggle with lower performance.

Prewitt - Box Plot of Loss and Accuracy
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Fig. 10: Prewitt - Box Plot of Loss and Accuracy
The gaps suggest that the model might still be prone to overfitting, especially in the later epochs. Further regularization,
more data, or fine-tuning might help reduce such gaps. The Prewitt Box Plot of Loss and Accuracy from Fig. 10 serves as
an indication that training accuracy has always been higher than validation accuracy. From the standpoint of variability,
both training accuracy and validation loss are less variable, but they do provide some avenue for improvement in terms of

consistency of training and validation performance.
LoG - Confusion Matrix for 30 Epochs
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Fig. 11: LoG - Confusion Matrix for 30 Epochs
The model performed quite well on DB1, DB2, and DB3: 188, 160, and 190 correct predictions, respectively. DB4 still
poses certain challenges, yielding 118 correct predictions and 67 misclassifications as DB2. There was an improvement in
overall performance, but further optimization may be needed for DB4. The LoG Confusion Matrix for 30 Epochs shown
in Fig. 11 shows marked improvement in classification accuracy over the earlier models.

LoG - ROC Curve
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Fig. 12: LoG - ROC Curve
With an AUC of 0.94, the LoG ROC Curve in Fig. 12 is very strong, showing that the model can fairly well distinguish
between the classes. Although the model performs well generally, there is still some room for improvement, particularly
regarding the false positive rate, so as to allow for a higher true positive rate.
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LoG - Multiclass Precision-Recall Curve
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Fig. 13: LoG - Multiclass Precision-Recall Curve
The LoG Multiclass Precision-Recall Curve in Fig. 13 presents a detailed view of the precision-recall trade-off across all
classes. The precision-recall curves of Class 1 and Class 3 were perfectly discriminative, with AUCs of 1.00, whereas
Classes 2 and 4 had room for improvement, with AUCs of 0.79 and 0.83, respectively. These results signify a promising
model for some classes but needing further optimization for others.

LoG - Box Plot of Loss and Accuracy

e 8
<]

o

0.6

0.4

o

o

8

T

o

—

==

0.2

Training Accuracy  Validation Accuracy Training Loss validation Loss

Fig. 14: LoG - Box Plot of Loss and Accuracy
The LoG boxplots of Loss and Accuracy shown in Fig.14 represent the training- and validation-based accuracies and losses
data points. Looking at the plot, the evidence for overfitting is supported by the division between training accuracy and
validation accuracy. Also present are variations in training loss and validation loss, which might encourage further help
toward working out regularizations like dropout or data augmentation to enhance generalization.
LoG - Confusion Matrix for 10 Epochs
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Fig. 15: LoG - Confusion Matrix for 10 Epochs
There are instances when the majority of predictions are classified appropriately, as there are true positives along the
diagonal for all classes. DB1, DB2, and DB3 show best predictions whereas DB4 shows a few exceptions. This may
indicate good generalization by the model; few improvements can be made for DB4 and the highest accuracy is attainable
by the model.Yet, from the confusion matrix, a great performance by the model is evident.
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Fig. 16: LoG - ROC Curve
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The value of 0.91 for area under curve (AUC) goes on to signify that the model has shown an excellent class-distinguishing
ability, proving that balanced classification is being done by it. Moreover, the ROC curve (Fig. 16 epitomizes a remarkable
performance with the curve suddenly shooting up to the top left corner.

LoG - Multiclass Precision-Recall Curve
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Fig. 17: LoG - Multiclass Precision-Recall Curve
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Class 1 represents an impressively high AUC of 0.99. Class 3 becomes even better with an AUC score of 1.00, while Class
4 takes the third position with an AUC of 0.71. Although Class 2 should improve, the strength of the precision-recall
performance for multiple classes underlines the model's great power and efficiency. The last multiclass precision-recall

curve Fig. 17 guarantees the good perform
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Fig. 18: LoG - Multiclass Precision-Recall Curve

ance of all classes.

LoG - Multiclass Precision-Recall Curve
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The performance across classes highlights the model's versatility and its capacity to handle a range of data distributions
effectively.The precision-recall curve demonstrates strong precision for all four classes, with AUC scores approaching or
exceeding 0.9. This indicates that the model is not only making accurate predictions but is also performing well in terms
of recall, showing its ability to detect all relevant instances.
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LoG - Box Plot of Loss and Accuracy
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Fig. 19: LoG - Box Plot of Loss and Accuracy
The low variability and the close alignment of training and validation curves suggest the model is generalizing well and
not overfitting. The training and validation losses are also notably low, reflecting the model’s efficient learning process
and its ability to minimize errors.The box plot of training and validation accuracy reveals an excellent consistency in model
performance, with both training and validation accuracies consistently high.

VII. CONCLUSION

The hybrid deep learning model fostered by the joint architecture of CNN, ViT, and the Attention mechanism is sufficiently
capable of distinguishing among fingerprint prints, increasing the accuracy of fingerprint classification. The CNN extracts
local features, the VIT derives the global dependencies, and an Attention mechanism further refines the fingerprint areas
paying attention to ridge patterns and minutiae points for better-based classification. After 30 epochs, this model can
achieve an accuracy of up to 91.15% across several fingerprint datasets (DB1, DB2, DB3, DB4), perhaps facilitating the
realization of real-time biometric identification and security applications. Performance parameters, such as precision,
recall, F1-score, and ROC-AUC, establish that the model can indeed prove to be an apt solution for high-accuracy
classification tasks. Several avenues can further improve the model in various ways: optimization of the model with fine-
tuning of hyperparameters and advanced architectures will truly push the state-of-the-art, especially for challenging classes
such as DB4. Having a more robust repertoire of data augmentation methods could help with generalization as well as
tackle class imbalance. For deployment into the real-time system, it is imperative to bring down the latency of the model
while maintaining its accuracy so as to serve in a biometric system in real life. Increasing the size and diversity of the
dataset, including more difficult fingerprint classes or more types of biometrics, will improve robustness and adaptability.
The accuracy and scalability of this model would lend itself well to integrated applications for secure access systems, law
enforcement databases, and mobile authentication. Furthermore, integration with other modalities such as face or iris
recognition can provide hybrid solutions to yield even more secure and accurate identification
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